Convergence and divergence of Kleinian punctured torus groups

نویسنده

  • Kentaro Ito
چکیده

In this paper we give a necessary and sufficient condition in which a sequence of Kleinian punctured torus groups converges. This result tells us that every exotically convergent sequence of Kleinian punctured torus groups is obtained by the method due to Anderson and Canary (Invent. Math. 1996). Thus we obtain a complete description of the set of points at which the space of Kleinian punctured torus groups self-bumps. We also discuss Hausdorff limits of sequences of Bers slices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The space of Kleinian punctured torus groups is not locally connected

We show that the space of Kleinian punctured torus groups is not locally connected.

متن کامل

The Classification of Punctured-torus Groups

Thurston’s ending lamination conjecture proposes that a finitelygenerated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be though...

متن کامل

On the Maskit Slice of 4-dimensional Kleinian Punctured Torus Groups

Let Γ be a 3-dimensional Kleinian punctured torus group with accidental parabolics. The deformation space of Γ in the group of Möbius transformations on the 2-sphere is well-known as the Maskit slice of punctured torus groups. In this paper, we study the deformation space of Γ in the group of Möbius transformations on the 3-sphere, where Γ is naturally regarded as a 4-dimensional Kleinian group...

متن کامل

Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen

— The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.

متن کامل

Cannon-thurston Maps, I-bounded Geometry and a Theorem of Mcmullen

The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map. This gives a unification, an alternate proof and a generalisation of all known examples of the existence of Cannon-Thursto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012